

Engineering 80 – Spring 2016 Temperature Measurements

What You'll Be Learning About Today...

- Measuring Temperature
- Types of Temperature Sensors
 - Thermistor
 - Integrated Silicon Linear Sensor
 - Thermocouple
 - Resistive Temperature Detector (RTD)
- Choosing a Temperature Sensor
- Calibrating Temperature Sensors
- Thermal System Transient Response

What is Temperature?

SOURCE: http://www.clker.com/cliparts/6/5/b/f/11949864691020941855smiley114.svg.med.png

What is Temperature?

AN OVERLY SIMPLIFIED DESCRIPTION OF TEMPERATURE

SOURCE: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper2.html#c1

"Temperature is a measure of the tendency of an object to spontaneously give up energy to its surroundings. When two objects are in thermal contact, the one that tends to spontaneously lose energy is at the higher temperature." (Schroeder, Daniel V. An Introduction to Thermal Physics, 1st Edition (Ch, 1). Addison-Wesley.)

What is Temperature?

SOURCE: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper2.html#c1

"Temperature is a measure of the tendency of an object to spontaneously give up energy to its surroundings. When two objects are in thermal contact, the one that tends to spontaneously lose energy is at the higher temperature." (Schroeder, Daniel V. An Introduction to Thermal Physics, 1st Edition (Ch, 1). Addison-Wesley.)

Measuring Temperature with Rockets

ENGINEERING 80

Desirable Temperature Sensor Characteristics

SIMPLE RELATIONSHIP SENSOR OUTPUT \rightarrow TEMPERATURE

Thermistor

Thermistor – a resistor whose resistance changes with temperature

- Resistive element is generally a metal-oxide ceramic containing Mn, Co, Cu, or Ni
- Packaged in a thermally conductive glass bead or disk with two metal leads
- Suppose we have a "1 k Ω thermistor"
 - What does this mean?
 - At room temperature, the resistance of the thermistor is 1 $k\Omega$
 - What happens to resistance as we increase temperature?

Negative Temperature Coefficient

- Most materials exhibit a <u>negative temperature coefficient</u> (NTC)
 - Resistance **drops** with temperature!

Converting Resistance to Temperature

• The Steinhart-Hart Equation relates temperature to resistance

$$T_{(R)} = \left(A_{1} + B_{1} \ln \frac{R}{R_{ref}} + C_{1} \ln^{2} \frac{R}{R_{ref}} + D_{1} \ln^{3} \frac{R}{R_{ref}}\right)^{-1}$$

- T is the temperature (in Kelvin)
- \bullet R is the resistance at T and R_{ref} is resistance at T_{ref}
- A_1 , B_1 , C_1 , and D_1 are the Steinhart-Hart Coefficients
- HOW COULD WE DETERMINE THESE COEFFICIENTS?

SOURCE: http://p.globalsources.com/IMAGES/PDT/B1055847338/Thermistor.jpg

Converting Resistance to Temperature

$$T_{(R)} = \left(A_{1} + B_{1} \ln \frac{R}{R_{ref}} + C_{1} \ln^{2} \frac{R}{R_{ref}} + D_{1} \ln^{3} \frac{R}{R_{ref}}\right)^{-1}$$

PARA	METI	ER FOR	DETE	RMININ	IG NON	INAL	RESISTAN	CE VALU	ES		
NUMBER	B _{25/85} (K)	NAME	TOL. B VALUE %	A	В (К)	C (K ²)	D (K ³)	A ₁	B ₁ (K ⁻¹)	C1 (K ⁻²)	D ₁ (K ⁻³)
1	2880	Mat O. with Bn = 2880K	3	- 9.094	2251.74	229098	- 2.744820E+07	3.354016E-03	3.495020E-04	2.095959E-06	4.260615E-07
2	2990	Mat P. with Bn = 3990K	3	- 10.2296	2887.62	132336	- 2.502510E+07	3.354016E-03	3.415560E-04	4.955455E-06	4.364236E-07
3	3041	Mat Q. with Bn = 3041K	3	- 11.1334	3658.73	- 102895	5.166520E+05	3.354016E-03	3.349290E-04	3.683843E-06	7.050455E-07
4	3136	Mat R. with Bn = 3136K	3	- 12.4493	4702.74	- 402687	3.196830E+07	3.354016E-03	3.243880E-04	2.658012E-06	- 2.701560E-07
5	3390	Mat S. with Bn = 3390K	3	- 12.6814	4391.97	- 232807	1.509643E+07	3.354016E-03	2.993410E-04	2.135133E-06	- 5.672000E-09
e	3528 (1)	Mat I. with	0.5	- 12.0596	3687.667	-7617.13	- 5.914730E+06	3.354016E-03	2.909670E-04	1.632136E-06	7.192200E-08
0	3528 (2)	Bn = 3528K	0.5	- 21.0704	11903.95	- 2504699	2.470338E+08	3.354016E-03	2.933908E-04	3.494314E-06	-7.712690E-07
7	3560	Mat H. with Bn = 3560K	1.5	- 13.0723	4190.574	- 47158.4	- 1.199256E+07	3.354016E-03	2.884193E-04	4.118032E-06	1.786790E-07
8	3740	Mat B. with Bn = 3740K	2	- 13.8973	4557.725	- 98275	-7.522357E+06	3.354016E-03	2.744032E-04	3.666944E-06	1.375492E-07
9	3977	Mat A. with Bn =3977K	0.75	- 14.6337	4791.842	- 115334	- 3.730535E+06	3.354016E-03	2.569850E-04	2.620131E-06	6.383091E-08
10	4090	Mat C. with Bn = 4090K	1.5	- 15.5322	5229.973	- 160451	- 5.414091E+06	3.354016E-03	2.519107E-04	3.510939E-06	1.105179E-07
11	4190	Mat D. with Bn = 4190K	1.5	- 16.0349	5459.339	- 191141	- 3.328322E+06	3.354016E-03	2.460382E-04	3.405377E-06	1.034240E-07
12	4370	Mat E. with Bn = 4370K	2.5	- 16.8717	5759.15	- 194267	- 6.869149E+06	3.354016E-03	2.367720E-04	3.585140E-06	1.255349E-07
13	4570	Mat F. with Bn = 4570K	1.5	- 17.6439	6022.726	- 203157	- 7.183526E+06	3.354016E-03	2.264097E-04	3.278184E-06	1.097628E-07

Notes

(1) Temperature < 25 °C
(2) Temperature ≥ 25 °C

Converting Resistance to Temperature

• The Steinhart-Hart Equation relates temperature to resistance

$$T_{(R)} = \left(A_1 + B_1 \ln \frac{R}{R_{ref}} + C_1 \ln^2 \frac{R}{R_{ref}} + D_1 \ln^3 \frac{R}{R_{ref}}\right)^{-1}$$

- T is the temperature (in Kelvin)
- \bullet R is the resistance at T and R_{ref} is resistance at T_{ref}
- A_1 , B_1 , C_1 , and D_1 are the Steinhart-Hart Coefficients
- HOW COULD WE DETERMINE THESE COEFFICIENTS?
 - Take a look at the data sheet
 - Measure 3 resistances at 3 temperatures
 - Matrix Inversion (Linear Algebra)

How is Resistance Measured?

$$T_{(R)} = \left(A_1 + B_1 \ln \frac{R}{R_{ref}} + C_1 \ln^2 \frac{R}{R_{ref}} + D_1 \ln^3 \frac{R}{R_{ref}}\right)^{-1}$$

SOURCE: http://cdn.teachersupplysource.com/images/D/024-ENC-M-1700.jpg

SOURCE: http://p.globalsources.com/IMAGES/PDT/B1055847338/Thermistor.jpg

Thermistor Resistance (R_{T})

 A thermistor produces a resistance (R_T), which could be converted to a voltage signal

HOW COULD WE DO THIS?

 ${\tt SOURCE: http://2.bp.blogspot.com/-Pwxc29B8fkU/VHDBayyJGmI/AAAAAAAAAAAW/Po9R4z7WPYI/s1600/Baby-Making-Funny-Face.png}$

Thermistor Resistance (R_{T})

 A thermistor produces a resistance (R_T), which could be converted to a voltage signal

Power Dissipation in Thermistors

- A current must pass through the thermistor to measure the voltage and calculate the resistance
- The current flowing through the thermistor generates heat because the thermistor dissipates electrical power

$$P = I^2 R_T$$

- The heat generated causes a temperature rise in the thermistor
- This is called **<u>Self-Heating</u>**
- WHY IS SELF-HEATING BAD?

Power Dissipation and Self-Heating

- Self-Heating can introduce an error into the measurement
- The increase in device temperature (ΔT) is related to the power dissipated (P) and the power dissipation factor (δ)

$$P = \delta \varDelta T$$

Where P is in [W], ΔT is the rise in temperature in [°C]

• Suppose I = 5 mA, $R_T = 4$ k Ω , and $\delta = 0.067$ W/°C, what is ΔT ?

$$(0.005 \text{ A})^2 (4000 \Omega) = (0.067 \text{ W/oC}) \Delta T$$

$$\Delta T = 1.5 \ ^{o}C$$

- What effect does a ΔT of 1.5 °C have on your thermistor measurements?
- How can we reduce the effects of self-heating?
 - Increase the resistance of the thermistor!

Thermistor Signal Conditioning Circuit

• A voltage divider and a unity gain buffer will be used to measure temperature in the lab

Summary Thus Far...

	Thermistor
Temperature Range	-100 to 450°C
Sensitivity	several Ω / Ω / °C
Accuracy	±0.1°C
Linearity	Requires at least 3rd order polynomial or equivalent look up table.
Ruggedness	The thermistor element is housed in a variety of ways, however, the most stable, hermetic Ther- mistors are enclosed in glass. Generally ther- mistors are more difficult to handle, but not affected by shock or vibration.
Responsiveness in stirred oil	1 to 5 Secs
Excitation	Voltage Source
Form of Output	Resistance
Typical Size	0.1 x 0.1 in.
Price	>\$10

Integrated Silicon Linear Sensors

SOURCE: https://labjack.com/sites/default/files/LM34CAZ_1.png

Integrated Silicon Linear Sensors

- An integrated silicon linear sensor is a three-terminal device
 - Power and ground inputs
 - Relatively simple to use and cheap
 - Circuitry inside does linearization and signal conditioning
 - Produces an output voltage linearly dependent on temperature

$$V_{OUT} = T_C \bullet T_A + V_{0} \circ_C$$

Integrated Silicon Linear Sensors

- An integrated silicon linear sensor is a three-terminal device
 - Power and ground inputs
 - Relatively simple to use and cheap
 - Circuitry inside does linearization and signal conditioning
 - Produces an output voltage linearly dependent on temperature
 - When compared to other temperature measurement devices, these sensors are <u>LESS</u> accurate, operate over a <u>NARROWER</u> temperature range, and are <u>LESS</u> responsive

Summary Thus Far...

	Thermistor	Integrated Silicon
Temperature Range	-100 to 450°C	-55 to 150°C
Sensitivity	several Ω / Ω / °C	Based on technology that is -2mV/°C sensitive
Accuracy	±0.1°C	±1°C
Linearity	Requires at least 3rd order polynomial or equivalent look up table.	At best within ±1°C. No linearization required.
Ruggedness	The thermistor element is housed in a variety of ways, however, the most stable, hermetic Ther- mistors are enclosed in glass. Generally ther- mistors are more difficult to handle, but not affected by shock or vibration.	As rugged as any IC housed in a plastic pack- age such as dual-in-line or surface outline ICs.
Responsiveness in stirred oil	1 to 5 Secs	4 to 60 Secs
Excitation	Voltage Source	Typically Supply Voltage
Form of Output	Resistance	Voltage, Current, or Digital
Typical Size	0.1 x 0.1 in.	From TO-18 Transistors to Plastic DIP
Price	> \$10	\$1 to \$10

Thermocouple

 <u>Thermocouple</u> – a two-terminal element consisting of two dissimilar metal wires joined at the end

SOURCE: http://upload.wikimedia.org/wikipedia/en/e/ed/Thermocouple_(work_diagram)_LMB.png

The Seebeck Effect

 <u>Seebeck Effect</u> – A conductor generates a voltage when it is subjected to a temperature gradient

The Seebeck Effect

- <u>Seebeck Effect</u> A conductor generates a voltage when it is subjected to a temperature gradient
 - Measuring this voltage requires the use of a second conductor material

The Seebeck Effect

- <u>Seebeck Effect</u> A conductor generates a voltage when it is subjected to a temperature gradient
 - Measuring this voltage requires the use of a second conductor material
 - The other material needs to be composed of a different material

The relationship between temperature difference and voltage varies with materials

The voltage difference of the two dissimilar metals can be measured and related to the corresponding temperature gradient Nickel-Chromium Alloy

V_S = S∆T

Copper-Nickel Alloy

Measuring Temperature

- To measure temperature using a thermocouple, you can't just connect the thermocouple to a measurement system (e.g. voltmeter)
- The voltage measured by your system is proportional to the temperature difference between the primary junction (hot junction) and the junction where the voltage is being measured (Ref junction)

SOURCE: http://www.pcbheaven.com/wikipages/images/thermocouples_1271330366.png

Measuring Temperature

- To measure temperature using a thermocouple, you can't just connect the thermocouple to a measurement system (e.g. voltmeter)
- The voltage measured by your system is proportional to the temperature difference between the primary junction (hot junction) and the junction where the voltage is being measured (Ref junction)

To determine the absolute temperature at the hot junction...

SOURCE: http://www.pcbheaven.com/wikipages/images/thermocouples_1271330366.png

You need to know the temperature at the Ref junction! How can we determine the temperature at the

reference junction?

Ice Bath Method (Forcing a Temperature)

- Thermocouples measure the voltage difference between two points
- To know the absolute temperature at the hot junction, one must know the temperature at the Ref junction

 NIST thermocouple reference tables are generated with T_{ref} = 0 °C

$$V_{meas} = V(T_{hot}) - V(T_{ref})$$

$$V(T_{hot}) = V_{meas} + V(T_{ref})$$

If we know the voltage-temperature relationship of our thermocouple, we could determine the temperature at the hot junction IS IT REALLY THAT EASY?

Nonlinearity in the Seebeck Coefficient

- Thermocouple output voltages are highly nonlinear
- The Seebeck coefficient can vary by a factor of 3 or more over the operating temperature range of the thermocouples

Temperature Conversion Equation

 $T = a_0 + a_1 V + a_2 V^2 + \dots + a_n V^n$

	TYPE E	TYPE J	TYPE K	TYPE R	TYPE S	TYPE T
	Nickel-10%	Iron(+)	Nickel-10% Chromium(+)	Platinum-13% Rhodium(+)	Platinum-10% Rhodium(+)	Copper(+)
	Chromium(+)	Versus	Versus	Versus	Versus	Versus
	Versus Constantan(-)	Constantan(-)	Nickel-5%(-) (Aluminum Silicon)	Platinum(-)	Platinum(-)	Constantan(-)
	-100°C to 1000°C ± 0.5°C	0°C to 760°C ± 0.1°C	0°C to 1370°C ± 0.7°C	0°C to 1000°C ± 0.5°C	0°C to 1750°C ± 1°C	-160°C to 400°C ±0.5°C
	9th order	5th order	8th order	8th order	9th order	7th order
a ₀	0.104967248	-0.048868252	0.226584602	0.263632917	0.927763167	0.100860910
a ₁	17189.45282	19873.14503	24152.10900	179075.491	169526.5150	25727.94369
a ₂	-282639. 0850	-218614.5353	67233.4248	-48840341.37	-31568363.94	-767345.8295
a ₃	12695339.5	11569199.78	2210340.682	1.90002E + 10	8990730663	78025595.81
a ₄	-448703084.6	-264917531.4	-860963914.9	-4.82704E + 12	-1.63565E + 12	-9247486589
a ₅	1.10866E + 10	2018441314	4.83506E + 10	7.62091E + 14	1.88027E + 14	6.97688E + 11
a ₆	-1. 76807E + 11		-1. 18452E + 12	-7.20026E + 16	-1.37241E + 16	-2.66192E + 13
a ₇	1.71842E + 12		1.38690E + 13	3.71496E + 18	6.17501E + 17	3.94078E + 14
a ₈	-9.19278E + 12		-6.33708E + 13	-8.03104E + 19	-1.56105E + 19	
a ₉	2.06132E + 13				1.69535E + 20	

Look-Up Table for a Type T Thermocouple

Voltage difference of the hot and cold junctions: V_{meas} = 3.409 mV What is the temperature of the hot junction if the cold junction is at 22 °C?

ITS-90 Table for Type T thermocouple

					Tuble loi	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	incrine co	apre			
°C	0	1	2	3	4 Thormost	5	6	V	- V/T) _ V	(T \
					Inermoele	ectric voltag	einmv	V mea	s = V(1)	hot) - V	(Iref)
-10	-0.383	-0.345	-0.307	-0.269	-0.231	-0.193	-0.154	ince		100	
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234				
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	V(T _b) = V	+ V	(T
10	0.391	0.431	0.470	0.510	0.549	0.589	0.629	• • • •	ot, -u	neas -	v · rei/
20	0.790	0.830	0.870	0.911	0.951	0.992	1.033	1.074	1.114	1.155	1.196
30	1.196	1.238	1.279	1.320	1.362	1.403	1.445	1.486	1.528	1.570	1.612
40	1.612	1.654	1.696	1.738	1.780	1.823	1.865	1.908	1.950	1.993	2.036
50	2.036	2.079	2.122	2.165	2.208	2.251	2.294	2.338	2.381	2.425	2.468
60	2.468	2.512	2.556	2.600	2.643	2.687	2.732	2.776	2.820	2.864	2.909
70	2.909	2.953	2.998	3.043	3.087	3.132	3.177	3.222	3.267	3.312	3.358
80	3.358	3.403	3.448	3.494	3.539	3.585	3.631	3.677	3.722	3.768	3.814
90	3.814	3.860	3.907	3.953	3.999	4.046	4.092	4.138	4.185	4.232	4.279
100	4.279	4.325	4.372	4.419	4.466	4.513	4.561	4.608	4.655	4.702	4.750
110	4.750	4.798	4.845	4.893	4.941	4.988	5.036	5.084	5.132	5.180	5.228

At 22 °C, the reference junction voltage is 0.870 mV The hot junction voltage is therefore 3.409 mV + 0.870 mV = 4.279 mV The temperature at the hot junction is therefore 100 °C

33

APPLYING WHAT WE'VE LEARNED

Voltage difference of the hot and cold junctions: V_{meas} = 4.472 mV What is the temperature of the hot junction if the cold junction is at -5 °C?

	115-90 Table for Type T thermocouple										
T.	0) 1	2	3	4	5	6	7	8	9	10
•					Thermoele	ectric voltag	e in mV				
-10	-0.383	-0.345	-0.307	-0.269	-0.231	-0.193	-0.154	-0.116	-0.077	-0.039	0.000
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.352	0.391
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.352	0.391
10	0.391	0.431	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749	0.790
20	0.790	0.830	0.870	0.911	0.951	0.992	1.033	1.074	1.114	1.155	1.196
30	1.196	1.238	1.279	1.320	1.362	1.403	1.445	1.486	1.528	1.570	1.612
40	1.612	1.654	1.696	1.738	1.780	1.823	1.865	1.908	1.950	1.993	2.036
50	2.036	2.079	2.122	2.165	2.208	2.251	2.294	2.338	2.381	2.425	2.468
60	2.468	2.512	2.556	2.600	2.643	2.687	2.732	2.776	2.820	2.864	2.909
70	2.909	2.953	2.998	3.043	3.087	3.132	3.177	3.222	3.267	3.312	3.358
80	3.358	3.403	3.448	3.494	3.539	3.585	3.631	3.677	3.722	3.768	3.814
90	3.814	3.860	3.907	3.953	3.999	4.046	4.092	4.138	4.185	4.232	4.279
100	4.279	4.325	4.372	4.419	4.466	4.513	4.561	4.608	4.655	4.702	4.750
110	4.750	4.798	4.845	4.893	4.941	4.988	5.036	5.084	5.132	5.180	5.228

At -5 °C, the cold junction voltage is –0.193 mV The hot junction voltage is therefore 4.472 mV – 0.193 mV = 4.279 mV The temperature at the hot junction is therefore 100 °C

Temperature Measurements

HARVEY MUDD College

Is This Really Practical For a Rocket?

What is another method of determining the temperature at the reference junction?

Temperature Measurements

Cold Junction Compensation

SOURCE: http://www.industrial-electronics.com/DAQ/images/10_13.jpg

Acquiring Data

Thermocouples are very noise prone & usually need filtering

Temperature Measurement Devices in Lab

	Thermocouple		
Temperature Range	-270 to 1800°C		
Sensitivity	10s of μV / °C		
Accuracy	±0.5°C		
Linearity	Requires at least a 4th order polynomial or equivalent look up table.		
Ruggedness	The larger gage wires of the thermocouple make this sensor more rugged. Additionally, the insulation materi- als that are used enhance the thermo- couple's sturdiness.		
Responsiveness in stirred oil	less than 1 Sec		
Excitation	None Required		
Form of Output	Voltage		
Typical Size	Bead diameter = 5 x wire diameter		
Price	\$1 to \$50		

Thermistor	Integrated Silicon
-100 to 450°C	-55 to 150°C
several $\Omega / \Omega / C$	Based on technology that is -2mV/°C sensitive
±0.1°C	±1°C
Requires at least 3rd order polynomial or equivalent look up table.	At best within ±1°C. No linearization required.
The thermistor element is housed in a variety of ways, however, the most stable, hermetic Ther- mistors are enclosed in glass. Generally ther- mistors are more difficult to handle, but not affected by shock or vibration.	As rugged as any IC housed in a plastic pack age such as dual-in-line or surface outline ICs.
1 to 5 Secs	4 to 60 Secs
Voltage Source	Typically Supply Voltage
Resistance	Voltage, Current, or Digital
0.1 x 0.1 in.	From TO-18 Transistors to Plastic DIP
>\$10	\$1 to \$10

Resistive Temperature Detector (RTD)

- Two terminal device
- Usually made out of platinum
- Positive temperature coefficient
- Tends to be linear
- R = R₀(1+ α)(T-T₀) where T₀ = 0°C R₀ = 100 Ω , α = 0.03385 Ω / Ω °C
- At 10°C, R = 100(1+0.385)(10) = 103.85 Ω
- They are best operated using a small constant current source
- \bullet Accuracy of 0.01 $^{\rm o}{\rm C}$

• EXPENSIVE!

Typical RTD Design

Temperature Measurement Devices

	Thermocouple	RTD	Thermistor	Integrated Silicon
Temperature Range	-270 to 1800°C	-250 to 900 °C	-100 to 450°C	-55 to 150°C
Sensitivity	10s of μV / °C	0.00385 Ω / Ω / °C (Platinum)	several Ω / Ω / °C	Based on technology that is -2mV/°C sensitive
Accuracy	±0.5°C	±0.01°C	±0.1°C	±1°C
Linearity	Requires at least a 4th order polynomial or equivalent look up table.	Requires at least a 2nd order polynomial or equivalent look up table.	Requires at least 3rd order polynomial or equivalent look up table.	At best within ±1°C. No linearization required.
Ruggedness	The larger gage wires of the thermocouple make this sensor more rugged. Additionally, the insulation materi- als that are used enhance the thermo- couple's sturdiness.	RTDs are susceptible to damage as a result of vibration. This is due to the fact that they typ- ically have 26 to 30 AWG leads which are prone to breakage.	The thermistor element is housed in a variety of ways, however, the most stable, hermetic Ther- mistors are enclosed in glass. Generally ther- mistors are more difficult to handle, but not affected by shock or vibration.	As rugged as any IC housed in a plastic pack- age such as dual-in-line or surface outline ICs.
Responsiveness in stirred oil	less than 1 Sec	1 to 10 Secs	1 to 5 Secs	4 to 60 Secs
Excitation	None Required	Current Source	Voltage Source	Typically Supply Voltage
Form of Output	Voltage	Resistance	Resistance	Voltage, Current, or Digital
Typical Size	Bead diameter = 5 x wire diameter	0.25 x 0.25 in.	0.1 x 0.1 in.	From TO-18 Transistors to Plastic DIP
Price	\$1 to \$50	\$25 to \$1000	>\$10	\$1 to \$10

How Do I Know If These Are Working?

SOURCE: http://www.accuglassproducts.com/product.php?productid=17523

Calibration

• How could we calibrate a temperature sensor?

SOURCE: http://www.thermoworks.com/products/calibration/usb_reference.html

Each probe includes an individual NIST-Traceable calibration certificate with test data at 0, 25, 70, and 100°C.

25 °C

Tracking the Rate of Temperature Change

- If a slow sensor is placed into a rocket that is launched to a high altitude, the sensor may not be able to track the rate of temperature change
- A critical property of a temperaturemeasurement device is how quickly it responds to a change in external temperature

SUMMARY

- Measuring Temperature
- Types of Temperature Sensors
 - Thermistor
 - Integrated Silicon Linear Sensor
 - Thermocouple
 - Resistive Temperature Detector (RTD)
- Choosing a Temperature Sensor
- Calibrating Temperature Sensors
- Thermal System Transient Response